Votre recherche
Résultats 12 ressources
-
Despite the success of the Universal Dependencies (UD) project exemplified by its impressive language breadth, there is still a lack in `within-language breadth': most treebanks focus on standard languages. Even for German, the language with the most annotations in UD, so far no treebank exists for one of its language varieties spoken by over 10M people: Bavarian. To contribute to closing this gap, we present the first multi-dialect Bavarian treebank (MaiBaam) manually annotated with part-of-speech and syntactic dependency information in UD, covering multiple text genres (wiki, fiction, grammar examples, social, non-fiction). We highlight the morphosyntactic differences between the closely-related Bavarian and German and showcase the rich variability of speakers' orthographies. Our corpus includes 15k tokens, covering dialects from all Bavarian-speaking areas spanning three countries. We provide baseline parsing and POS tagging results, which are lower than results obtained on German and vary substantially between different graph-based parsers. To support further research on Bavarian syntax, we make our dataset, language-specific guidelines and code publicly available.
-
We investigate the effect of integrating lexicon information to an extremely low-resource language when annotated data is scarce for morpho-syntactic analysis. Obtaining such data and linguistic resources for these languages are usually constrained by a lack of human and financial resources making this task particularly challenging. In this paper, we describe the collection and leverage of a bilingual lexicon for Poitevin-Saintongeais, a regional language of France, to create augmented data through a neighbor-based distributional method. We assess this lexicon-driven approach in improving POS tagging while using different lexicon and augmented data sizes. To evaluate this strategy, we compare two distinct paradigms: neural networks, which typically require extensive data, and a conventional probabilistic approach, in which a lexicon is instrumental in its performance. Our findings reveal that the lexicon is a valuable asset for all models, but in particular for neural, demonstrating an enhanced generalization across diverse classes without requiring an extensive lexicon size.
-
In this paper we present a series of experiments towards POS tagging Corsican, a less-resourced language spoken in Corsica and linguistically related to Italian. The first contribution is Corsican-POS, the first gold standard POS-tagged corpus for Corsica, composed of 500 sentences manually annotated with the Universal POS tagset. Our second contribution is a set of experiments and evaluation of POS tagging models which starts with a baseline model for Italian and is aimed at finding the best training configuration, namely in terms of the size and combination strategy of the existing raw and annotated resources. These experiments result in (i) the first POS tagger for Corsican, reaching an accuracy of 93.38%, (ii) a quantification of the gain provided by the use of each available resource. We find that the optimal configuration uses Italian word embeddings further specialized with Corsican embeddings and trained on the largest gold corpus for Corsican available so far.
-
The Occitan language is a less resourced language and is classified as `in danger' by the UNESCO. Thereby, it is important to build resources and tools that can help to safeguard and develop the digitisation of the language. CorpusArièja is a collection of 72 texts (just over 41,000 tokens) in the Occitan language of the French department of Ariège. The majority of the texts needed to be digitised and pass within an Optical Character Recognition. This corpus contains dialectal and spelling variation, but is limited to prose, without diachronic variation or genre variation. It is an annotated corpus with two levels of lemmatisation, POS tags and verbal inflection. One of the main aims of the corpus is to enable the conception of tools that can automatically annotate all Occitan texts, regardless of the dialect or spelling used. The Ariège territory is interesting because it includes the two variations that we focus on, dialectal and spelling. It has plenty of authors that write in their native language, their variety of Occitan.
-
This paper presents a first attempt to apply Universal Dependencies (De Marneffe et al., 2021) to train a parser for Mauritian Creole (MC), a French-based Creole language spoken on the island of Mauritius. This paper demonstrates the construction of a 161-sentence (1007-token) treebank for MC and evaluates the performance of a part-of-speech tagger and Universal Dependencies parser trained on this data. The sentences were collected from publicly available grammar books (Syea, 2013) and online resources (Baker and Kriegel, 2013), as well as from government-produced school textbooks (Antonio-Françoise et al., 2021; Natchoo et al., 2017). The parser, trained with UDPipe 2 (Straka, 2018), reached F1 scores of UPOS=86.2, UAS=80.8 and LAS=69.8. This fares favorably when compared to models of similar size for other under-resourced Indigenous and Creole languages. We then address some of the challenges faced when applying UD to Creole languages in general and to Mauritian Creole in particular. The main challenge was the handling of spelling variation in the input. Other issues include the tagging of modal verbs, middle voice sentences, and parts of the tense-aspect-mood system (such as the particle fek).
-
Occitan is a Romance language of France, a little part of Italy and Spain. It includes many written variations, dialectal and spelling variations. Being able to take variation into account is a major challenge to provide the language. Automatic processing of Occitan has been developing over the last ten years. Resources and tools have been developed and are beginning to take dialectal variation into account in these works. However, graphical variation is rarely taken into account. Our research focuses on the automatic annotation into lemmas, parts of speech and verbal inflection of a corpus of texts containing these two types of variation. From this corpus we train robust automatic annotation tools on global variation in Occitan.
-
Ce travail présente des contributions récentes à l'effort de doter l'occitan de ressources et outils pour le TAL. Plusieurs ressources existantes ont été modifiées ou adaptées, notamment un tokéniseur à base de règles, un lexique morphosyntaxique et un corpus arboré. Ces ressources ont été utilisées pour entraîner et évaluer des modèles neuronaux pour la lemmatisation. Dans le cadre de ces expériences, un nouveau corpus plus large (2 millions de tokens) provenant du Wikipédia a été annoté en parties du discours, lemmatisé et diffusé.
-
One of the challenges with finetuning pretrained language models (PLMs) is that their tokenizer is optimized for the language(s) it was pretrained on, but brittle when it comes to previously unseen variations in the data. This can for instance be observed when finetuning PLMs on one language and evaluating them on data in a closely related language variety with no standardized orthography. Despite the high linguistic similarity, tokenization no longer corresponds to meaningful representations of the target data, leading to low performance in, e.g., part-of-speech tagging. In this work, we finetune PLMs on seven languages from three different families and analyze their zero-shot performance on closely related, non-standardized varieties. We consider different measures for the divergence in the tokenization of the source and target data, and the way they can be adjusted by manipulating the tokenization during the finetuning step. Overall, we find that the similarity between the percentage of words that get split into subwords in the source and target data (the split word ratio difference) is the strongest predictor for model performance on target data.
-
We present lemmatization experiments on the unstandardized low-resourced languages Low Saxon and Occitan using two machine-learningbased approaches represented by MaChAmp and Stanza. We show different ways to increase training data by leveraging historical corpora, small amounts of gold data and dictionary information, and discuss the usefulness of this additional data. In the results, we find some differences in the performance of the models depending on the language. This variation is likely to be partly due to differences in the corpora we used, such as the amount of internal variation. However, we also observe common tendencies, for instance that sequential models trained only on gold-annotated data often yield the best overall performance and generalize better to unknown tokens.
-
Apertium linguistic data for Occitan
-
This article describes the creation of corpora with part-of-speech annotations for three regional languages of France: Alsatian, Occitan and Picard. These manual annotations were performed in the context of the RESTAURE project, whose goal is to develop resources and tools for these under-resourced French regional languages. The article presents the tagsets used in the annotation process as well as the resulting annotated corpora.
Explorer
Corpus
-
Texte
(3)
-
Annotated
(3)
- Morphology (3)
-
Annotated
(3)
Langue
- Corse (1)
- Créoles (1)
-
Multilingue
(1)
- Langues COLaF (1)
- Occitan (6)
- Poitevin-Saintongeais (1)