Bibliographie complète
How to Parse a Creole: When Martinican Creole Meets French
Type de ressource
Conference Paper
Auteurs/contributeurs
- Mompelat, Ludovic (Author)
- Dakota, Daniel (Author)
- Kübler, Sandra (Author)
- Calzolari, Nicoletta (Editor)
- Huang, Chu-Ren (Editor)
- Kim, Hansaem (Editor)
- Pustejovsky, James (Editor)
- Wanner, Leo (Editor)
- Choi, Key-Sun (Editor)
- Ryu, Pum-Mo (Editor)
- Chen, Hsin-Hsi (Editor)
- Donatelli, Lucia (Editor)
- Ji, Heng (Editor)
- Kurohashi, Sadao (Editor)
- Paggio, Patrizia (Editor)
- Xue, Nianwen (Editor)
- Kim, Seokhwan (Editor)
- Hahm, Younggyun (Editor)
- He, Zhong (Editor)
- Lee, Tony Kyungil (Editor)
- Santus, Enrico (Editor)
- Bond, Francis (Editor)
- Na, Seung-Hoon (Editor)
Title
How to Parse a Creole: When Martinican Creole Meets French
Abstract
We investigate methods to develop a parser for Martinican Creole, a highly under-resourced language, using a French treebank. We compare transfer learning and multi-task learning models and examine different input features and strategies to handle the massive size imbalance between the treebanks. Surprisingly, we find that a simple concatenated (French + Martinican Creole) baseline yields optimal results even though it has access to only 80 Martinican Creole sentences. POS embeddings work better than lexical ones, but they suffer from negative transfer.
Date
2022-10
Proceedings Title
Proceedings of the 29th International Conference on Computational Linguistics
Place
Gyeongju, Republic of Korea
Publisher
International Committee on Computational Linguistics
Pages
4397–4406
Référence
Mompelat, L., Dakota, D., & Kübler, S. (2022). How to Parse a Creole: When Martinican Creole Meets French. In N. Calzolari, C.-R. Huang, H. Kim, J. Pustejovsky, L. Wanner, K.-S. Choi, P.-M. Ryu, H.-H. Chen, L. Donatelli, H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, & S.-H. Na (Eds.), Proceedings of the 29th International Conference on Computational Linguistics (pp. 4397–4406). International Committee on Computational Linguistics. https://aclanthology.org/2022.coling-1.387/
Langue
Lien vers cette notice