Tag your Occitan text
You can find more information on this specific model here: https://github.com/DEFI-COLaF/modeles-papie
You can find more information on this specific model here: https://github.com/DEFI-COLaF/modeles-papie
Please remember that corpus creation and software engineering is valid research, so please cite these resources when you use this lemmatizer for your research: this includes the wonderful original research by E. Manjavacas, M. Kestemont and Á. Kádár as well as the software wrapping built to handle pre- and post-processing.
For each models, a bibliography and potentially other citable works are given, such as models and datasets are given.
@software{thibault_clerice_2020_3883590, author = {Clérice, Thibault}, title = {Pie Extended, an extension for Pie with pre-processing and post-processing}, month = jun, year = 2020, publisher = {Zenodo}, doi = {10.5281/zenodo.3883589}, url = {https://doi.org/10.5281/zenodo.3883589} } @inproceedings{manjavacas-etal-2019-improving, title = "Improving Lemmatization of Non-Standard Languages with Joint Learning", author = "Manjavacas, Enrique and K{\'a}d{\'a}r, {\'A}kos and Kestemont, Mike", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)", month = jun, year = "2019", address = "Minneapolis, Minnesota", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/N19-1153", doi = "10.18653/v1/N19-1153", pages = "1493--1503",}
@software{nedey_2024, author = {Nédey, Oriane and Janès, Juliette and Sagot, Benoît and Bawden, Rachel and Clérice, Thibault}, title = {Modèle Occitan (0.0.1)}, month = may, year = 2024, publisher={COLaF}, version={v0.0.1}, url={https://github.com/DEFI-COLaF/modeles-papie} } @inproceedings{miletic:hal-02123743, TITLE = \{\{Transformation d'annotations en parties du discours et lemmes vers le format Universal Dependencies : {\'e}tude de cas pour l'alsacien et l'occitan}\\\}, AUTHOR = {Miletic, Aleksandra and Bernhard, Delphine and Bras, Myriam and Ligozat, Anne-Laure and Vergez-Couret, Marianne}, URL = {https://hal.science/hal-02123743}, BOOKTITLE = \{\{26e conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN-2019) et 21e {\'e}dition la conf{\'e}rence jeunes chercheur$\times$euse$\times$s RECITAL\}\}, ADDRESS = {Toulouse, France}, PUBLISHER = \{\{ATALA\}\}, SERIES = {Actes de la Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles}, VOLUME = {2}, PAGES = {427-435}, YEAR = {2019}, MONTH = Jul, }
this model provides support for the lemmatization and part-of-speech tagging of Occitan texts. The model was trained on two datasets available for Occitan dialects:
Model info | Finetuned from | Training data | Model+Training hyperparameters | Accuracy (TTB testset all dialects) |
---|---|---|---|---|
MaChAmp by (Hopton and Aepli, 2024) | mBERT finetuned on Occitan | TTB | 94.10 | |
PaPie_POS_WIKITTB | scratch | WIKI + TTB | - 18 epochs - 1 layer for SentRNN, CharRNN, AttentionalDecoder - embeddings + hidden size 128 - include PaPie LM during training |
93.58 |
MaChAmp by (Miletic, 2023) | mBERT | TTB | 92.26 |
Model info | Finetuned from | Training data | Model+Training hyperparameters | Accuracy (TTB testset all dialects) |
---|---|---|---|---|
Stanza by (Miletic, 2023) | FastText | TTB | - input token+POS | 93.21 |
PaPie_Lemma_finetune-WIKI2TTB | WIKI | TTB | - vocabulary expanded with new words/chars/lemmas/labels from TTB: 592 chars / 24000 words / 798 lemmas - 39 epochs |
92.89 |
This lemmatizer is provided to you thanks to the data of the LASLA, the software of Emmanuel Manjavacas and Mike Kestemont and some engineering from the École nationale des chartes. If you want to cite them :